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Preface

The problem of modeling optical turbulence effects within target acquisition
models has largely been limited to characterizing the influence of turbulent
blur on the modulation transfer function (MTF) for the system under study.
However, as useful as this characterization may be, the effects of turbulence are
often not limited to the MTF alone. The MTF is only one of three turbulence
cffccts on impacting scnsing systems.

The remaining two effects are normally described as scintillation and angle-of-
arrival variations. Scintillation causes temporal fluctuations in received intensity
across a target and/or background. The most obvious example of scintillation
can be seen when approaching an oncoming vehicle on the highway. A glint
portion of the vehicle (usually a sun reflection from the vehicle windshield)
appears to fluctuate in brightness. Scintillation is usually unimportant for
objects of near-uniform brightness, but the appearance of hot spots (glint
features) will be significantly influenced by scintillation effects. The influence
of scintillation can be considered a contributor to the overall noise within an
atmosphere-optics-electronics-human detection system.

Further, system designers tend to develop systems which suppress scintillation
effects. The log variance of scintillation varies as k7/¢, where k is the radiation
wavenumber 27 /X. Systems operating at longer wavelengths experienced
significantly reduced scintillation effects compared to visible systems. Receiver
aperture diameter also influences the scintillation. For large receiver optics the
scintillation is aperture averaged. Hence, more scintillation is seen by the human
eye than through a telescope at the same wavelength. There is, however, a
tradeoff between scintillation and atmospheric blurring effects. Larger apertures
that tend to reduce scintillation also tend to cause increased turbulent blurring.

At infrared (IR) wavelengths both scintillation and blurring effects are reduced,
yet turbulence effects are still a factor due to image distortion. In the far
IR, angle-of-arrival fluctuations are the more pervasive turbulence influence.
Also known as image wander, shimmer, heat boil, and jitter, angle-of-arrival
fluctuations are the first noticable turbulent distortion.

Currently, angle-of-arrival influences are not considered in target acquisition
models. The reason for this deficiency is rather simple: Systems analysis models
generally utilize linear shift invariant (LSI) assumptions. Angle of arrival effects
are not LSI because of a related parameter called the isoplanatic patch size,
0p. When 6y is large, scene objects appear to move in position due to angle-of-
arrival fluctuations, yet tend to maintain their structural coherence because the

il




v

same error applies to every point in the object. But as 6y shrinks in angular
extent below the angular subtense of an object of interest, different portions
of the object appear to shift independently in angle relative to one another.
The effects of such a distortion on an observer’s ability to percieve the object
then involves a complex interaction between object characteristics, background
characteristics, and the qualities of the perturbations. It becomes necessary
to conduct observer tests to determine the gestalt of the entire process on the
ability of the obscrver to understand the fluctuating scene. In the end it may
be possible to assign complexity values, similar to the N5o values used in target
acquisition codes, to evaluate the degrading effects of the image distortion on
the obscrver. capabilitics. These observer tests will require simulation of image
distortion through an image modification code.

This paper provides support for calculations needed in such image distortion
codes. In it, we describe a method of modifying images for angle-of-arrival
distortion and for the more standard phase screen approach. To perform
either of these tasks properly requires knowledge of the appropriate spatial
frequency spectrum of the turbulent fluctuations, and knowledge of the means
of representing these fluctuations in a model of the atmosphere. One must
then define a method of image manipulation which supports the calculation of
distorted images from undistorted source images. This text discusses use of
a turbulence spectrum developed recently which handles both inner and outer
scale influences on the refractive index spectrum within the earth’s surface layer
atmosphere.




Acknowledgements

The modeling of turbulence effects on image propagation is a difficult issue. The
math is nontrivial. As such, a careful review was necessary. Approximations
used were scrutinized, and where necessary, more precise language was suggested
by my reviewers: Drs. David Marlin and Edward Measure. Their assistance in
improving this document was invaluable.

I'd also like to thank Carlos Marrero, visiting student from Puerto Rico under
the auspices of the Hispanic Alliance of Colleges and Universities. His assistance
in coding the calculations needed to evaluate the beam width effects (shown in
figures 5 and 6) helped close a final gap in the text. Lastly, I'd like to thank
Dr. Sean ()’Brien who provided a ready ear while I worked through the image
distortion analysis and dealt with reviewer comments.




Table of Contents

Preface iii
Acknowledgements v
Executive Summary ix
1. Introduction 1
2. Fourier Analysis 3
2.1 Gaskill's Fourier Transform ........cccooviveeireeiiireeeeresensceiiieeeceriesseennnssssssseseees 4
2.1.1 Transform Definition.........ccccovvviivvveririirirrieeessseeeeeeiiseeeeseeeasessnens 4

2.1.2 Transforms of Selected Functions .........ccccoceveieiiiicciiiniieimmimnnininn 4

2.1.3 Convolution and Cross Correlation Operations...........ccccviieeniiniiiiiennnns 6

2.1.4 Extension of Gaskill's MethodsS.......cccvvvveieiiiiiiiccniiirneciiiinnieeereeeen. 7

2.2 ThE FOUTIET SOTIES. . uevireeeeeeeeresessisrerieteeeseeeaaaaaaaaaasssrnaeeenesssssiiisssssrnnntsrasesasssssassans 7
2.2.1 Transform DefinitionN. . ......coovuveeiiiiirieieerriereeiererers e rca s trse s ssssesssrseesninee 8

2.2.2 Fourier Series Convolution and Cross Correlation............ccovveeeieiinnnnn. 9

2.2.3 Transforms of Periodic FUncCtions..........c.ccoovviiiieereeeeeentoneniiinneeeennnienn. 11

2.3 The Fast Fourier Transform......cccoovvveiiiiiiiieeiiiiereeeeeeeeinnsectiie e nnii e sesnees 13

3. Optical Turbulence Structure 17
3.1 The Refractive Index Spectrum..........cccveeveenreenienieieiiiinienreeee s esiee e 19
3.1.1 Outer Scale DefinitiON.......cccccccvveiiiiiiieeeeeieeiirnrrteeeeeesseeeessecesssssrresssnsssss 21

2.1.2 Covariance Evaluation ......ccccceceiiiiiiiiieiieirieneereieereessenasicsesssssssessssssssannnes 21

3.2 The Refractive Index Structure Function...........ccceeeieviimmiveninnnceccenessiinnnenn, 22

3.3 Transforming the Covariance Function...........cccociviiiinininiiiiinininene. 24

4. Deflector and Phase Screens 27




4.1 Propagation Methodologies...........covvnmeciininiiiiiii e 28
4.1.1 Geometric Optics APPIOACH .....o.cvviiiiiiiiiiini s 29
4.1.2 Diffraction APProach ........cccviviiiiiiiiiin 31
4.2 Slab Crossing Time ANalYSiS........cccuirimriiinieiiieiniei s 32
4.3 Crossing Time Fluctuation SPeCtra.........coocivivnninieiniiimiimnii s, 36
4.4 Beam Deflection ANALYSIS .........cceveeriiiiiiimiiinienene et 39
4.5 Method COMPATISON .......ciiieeeeeeierriiieere et 46
5. Conclusions 49
References 51
Acronyms 55
Distribution 57
Figures
1. Comparison between Kolmogorov and outer-scale-influenced structure
FUTICEIOMIS o veveveeees e eeeeeeeeeeeeeeeeeseteeeabesassbbnae e abaeesmne s e s aaab e s s eaar s s e e b e e e s e b e s s s aa e s s nan e s 23
2. Comparison between different outer-scale-influenced structure functions
with varying outer scale lengths ... 24
3. Covariance function normalized relative to its amplitude at zero and
normalized abscissa measured relative to the outer scale length.................... 35
4. Ray deflection due to differential time to across a turbulent slab....ooccceiiieins 39
5. Normalized irradiance profiles plotted for various values of the parameter
A. The area under each curve equals unity. The normalized profile position
variable u ranges over the width of the patter from —1/2 to +1/2.................... 44
6. Efficiency response function € plotted as a function of the shape parameter
A and the pattern ratio B. The range of A values plotted indicates the
behavior of the efficiency across intermediate conditions spanning
between the IIMItING CASES.....c..coevreriuiiiiiiiiiiiieiieeir e 45
7. Proportional magnitude of the Fourier spectrum of the beam deflections
normalized with respect to the outer scale length...........ccooooniinniinin 46
viii




Executive Summary

Rationale

Forward-Looking Infrared (FI.TR) devices have been a part of the Army
inventory for over twenty years. In that time the state-of-the-art in FLIR
technology has improved significantly. We arc now using third-gencration FLIR
devices, which exhibit significantly lower noise and higher spatial resolution than
was possible twenty years ago. However, with that increased resolution has come
the realization that turbulence effects are not minimal when compared with the
system noise in these new sensors. Further, the next generation of FLIRs will
likely involve higher magnification devices designed for specialty applications
such as narrow fields of regard. To enable such applications, the sensor aperture
diameter may need to be increased, leading to larger amounts of turbulent blur
on the received imagery. Lower noise thresholds and higher resolution detection
grids often means being able to detect image distortion due to angle-of-arrival
fluctuations.

Because of these concerns, and because current sensor performance prediction
models do not incorporate turbulence effects, it is reasonable to attempt to
simulate turbulence effects in a modeling environment. Traditionally, analysis
of turbulence effects has followed the course of incorporating turbulent blur
effects as a multiplicative atmospheric turbulence Modulation Transfer Function
(MTF) when combined with the system MTF. However, for FLIR systems the
chief turbulence concern may be apparent object shape distortion and this effect,
because it is not shift invariant, cannot be modeled via an MTF. Rather, it must
be modeled using image processing techniques.

Analyses

To support these image processing techniques, one must develop a methodology
akin to methods originally developed for high energy laser simulations. The
principle method developed in the 1970’s to study these propagation problems
involved mathematical constructs known as phase screens. While the literature
on phase screens is somewhat extensive, certain key elements of the analyses
in this literature involve undeveloped assumptions, certain mathematical flaws,
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and exercises left to the reader. This approach did not seem satisfactory, leading
to the development of this document.

In this document we explore the basic equations necessary to describe
Fourier transforms, Fourier series expansions, and the fundamental equations
undergirding the Fast Fourier Transform technique. Because these methods
are essentially related, we show the means of transforming results obtained
by one Fourier method into its equivalent representation under another form.
We thus permit conversions (without disturbing questions about suitability
and applicability) between -different forms of thesc Fourier methods used
in diffcrent parts of the literaturc. In particular, the turbulence literaturc
uses significantly different nomenclature and transform techniques from the
propagation litcraturc. Suitable transforms arc possible when the turbulence
results have been translated into propagation literature form. These processes
constitute the bulk of chapters 2 and 3. In chapter 4 these techniques are applied
to the problems of phase and deflector screen propagation.

Chapter 4 contains an overview of the phase screen generation and derivation
process. Phase screens have been used in the past largely in beam-wave
applications. Our interest in image modification requires working with large
area effects. To support this goal, a less computationally intensive deflector
screen method is introduced. This method extends prior refractive raytracing
and mirage imaging techniques that handled only vertical inhomogeneities in
the refractive index structure for fully three-dimensional effects.

Conclusions

In this report, the mathematics of several key concepts are developed in support
of simulating turbulence effects on image propagation. As a result of these
developments the underlying means of translating between different forms of the
Fourier transform was shown. This development permitted the writing of the
turbulence spectrum in terms that can be used in computer representation of
turbulence effects. In combination with an analysis of both the phase screen
methodology and the deflector screen approach, we showed that large scale
turbulence can have significant effects on image distortion. A means was also
discovered for handling finite sized incoherent source regions emitting energy
that is received at a circular aperture. The resulting analysis showed that high
frequency turbulence has little effect on image shape distortion. The result of
these analyses is a method for distorting imagery for heat boil type turbulence
distortion effects. These effects essentially consist of a combination of angle-
of-arrival fluctuations which distort apparent object location and isoplanatism
which causes different portions of the scene to distort in different directions.




1. Introduction

Recent developments in optics have resulted in sensors of increasing sensitivity
at infrared (TR) wavelengths with significantly reduced noise that often limited
earlier devices. This has caused an increased awareness within the TR. sensor
development community that turbulence effects should be included in sensor
performance models.

In particular, turbulent image distortion can be significant for TR wavelength
imagery. However, the modeling tools to simulate distortion effects have
been nonexistent. One reason for this deficiency is that prior research in the
turbulence area has focused on astronomical problems, involving plane wave
propagation, narrow fields of view, large aperture sizes, and low turbulence. By
comparison, the Army problem of point-to-point observation in which observers
attempt to acquire and track targets near the ground usually involves spherical
wave propagation, wide fields of view, aperture sizes close to the Fresnel zone in
diameter, and high turbulence. For point-to-point observations with both object
and observer located near the earth’s surface, significant optical turbulence
effects may be encountered. For astronomical problems, the observation site is
usually selected to avoid as much turbulence as possible. Often the observatory
is thermally controlled to avoid temperature differences between the outside
atmosphere and the entrance pupil to the telescope. Such luxuries are not
possible for Army operations.

Flat desert conditions, for example, can cause extreme turbulence conditions.
When discussing turbulence viewing with Army and Marine officers at Ft. Knox,
KY, some years ago, a comment was made that targets more distant than
approximately 1 km were simply not engaged because the amount of turbulent
distortion and blur present made it nearly impossible to identify targets at longer
ranges. At IR wavelengths, turbulence effects are considerably less than at
visible wavelengths and so there is the hope that IR sensors will ultimately
provide better performance under high turbulence conditions. The question is
how much better? And can certain tradeoffs or adaptive optics further improve
sensor performance? The only way to quantitatively answer such questions is
through accurate modeling of turbulence effects and human perception testing
to determine how observers interpret distorted or partially corrected signals.
Modeling synthetic scenes including both system and turbulence effects means
the ability to perform perception testing under controlled conditions. Planned
adaptive optics augmentation of sensors can also be tested. The addition of
adaptive optics merely makes the sensors more complicated and extends the
modeling required to simulate the image acquisition process. Such a system

1




would still have to be evaluated in terms of its ability to compensate for
turbulence effects, and human testing would still be required to determine the
efficacy and cost effectiveness of such methods.

One key concern in determining turbulence effects is to adequately model
the differences in turbulence effects over a range of turbulence strengths. In
this report we discuss methodologies for simulating turbulence within image-
rendering software. While this topic is not new, prior efforts have been primarily
related to image blur effects only. Here, the focus is on image distortion.

This effort has strong links to prior efforts to understand turbulence effects on
beam wave propagation. Unfortunately that litcraturc is not as well documented
as might be imagined. While scveral studics have been conducted in the arca of
beam wave propagation, there are errors within the standard documentation.
Later papers have simply repeated these errors, while others have provided
correct equations without providing the basis for these results. A general
presentation of turbulence propagation methods is thus in order, a presentation
which attempts to generate seamless and consistent, error-free results, while
discussing the various caveats and limitations involved. In addition, a method
based on raytracing technology is discussed that should provide nearly the same
fidelity of calculation as is available from the standard phase screen methods
without the significant cost in computational time necessary to handle the
propagation of incoherent light at the level of tracking the propagation of field
amplitudes.

To accomplish this analysis task, we establish the nature of the Fourier transform
and its relationship to other Fourier relations. This first step is designed to
support a transformation of results between different, but related, standards
used in the literature. This literature crosses several disciplinary boundaries,
from micrometeorology to statistics to optics to computational methods. Each of
these disciplines has individualized means of representing Fourier objects. The
separate disciplines must be examined and interrelated to smoothly translate
between the different forms. In particular, to represent the Fourier version
of the refractive index power spectrum for optical turbulence, one must be
able to (1) translate between two forms of the Fourier transform, and (2)
express these results in a form compatible with the inverse Fourier transform
using a Fast Fourier method. This process involves converting the Fourier
transform of a continuous function to a Fourier series coefficient set compatible
with the periodic functions and limited frequency regime of the Fast Fourier
Transform. This form must be compatible with a propagation code that handles
sensor optics and the diffraction propagation between turbulence phase screens.
To support these various developments, the main analyses have been divided
between chapters: Fourier methods in chapter 2, turbulence representation in
chapter 3, and propagation methods in chapter 4.




"

2. Fourier Analysis

In this chapter we discuss Fourier representations of various types of functions.
As will be seen, representing these functions in terms of sinusoidal components
yields different results depending on the nature of the functions themselves.
These differences are of interest because of the various ways that turbulence
needs to be or has been represented in different settings.

In particular, in previous studies of optical turbulence structure (cf. Beland,
1993) the refractive index spectrum was viewed as space filling. However, we
know that fluctuations in the refractive index near the earth’s surface do not
extend upward significantly. Further, the strength of turbulence is likely a
horizontally varying quantity. Hence, although studies of turbulence simulation
discuss the naturc of the turbulence in terms of abstract, infinite ficlds of
turbulence, when treating numerical turbulence within finite computers, the
turbulence representation is always finite. Here we define the term “field” as
a multi-dimensionally varying random function which obeys certain statistical
properties. Often, in describing the temporal nature of turbulence fields,
Taylor’s hypothesis is used whereby the turbulence is considered “frozen” such
that it advects with the mean wind but otherwise does not change its spatial
fluctuational structurc.

In terms of finite computers, the turbulence structure is specified, limits are
applied, and fields are simulated using either hardware or gridded data sets
which are limited in extent. Thus, Fourier series representations are used rather
than Fourier transforms (Andrews and Shivamoggi, 1999), and these series are
represented in such a way as to be computed by fast computational methods.

For many readers, much of this chapter will be a review, but the information

is introduced to develop a common framework for discussion and to introduce

terminology and the particular form used for the Fast Fourier Transform (FFT).

In using the FFT method, the modeled volume of the turbulent region is assumed
to be periodic in three dimensions. The analysis, then, needs to consider a
three-dimensional problem. However, our analysis will begin by studying a one-
dimensional case and then extending the results to three dimensions. The z axis
is chosen for the analysis, but the propertics discussed will be the same on cach
of the other axes following changes in axis labels and integration limits.




2.1 Gaskill’s Fourier Transform

We begin by discussing a form of the Fourier transform (Gaskill, 1978) that has
symmetric forward and inverse transform equations. This form will be followed
closely when considering the Fourier series representation for periodic functions.
The results of these considerations will then be used in relating the transforms
currently adopted in the turbulence literature to the forms needed to represent
phase screens using an FFT approach.

2.1.1 Transform Definition
According to Gaskill (1978), the Fourier transform is defined as

F(©) = [ f@) exp(-izrag) da. 1)

One can then recover the original function, f(z), through the inverse transform
o<

1@ = [ F(e) expliznze) de (2)

The function F(£) is called the Fourier transform of the function f(z), and
similarly the function f(z) is called the inverse transform of F({). Note the
symmetry involved in Gaskill’s version of the Fourier transform. Other forms,
including those used in much of the turbulence literature, involve external 2x
factors in either the transform or inverse transform process. (In fact, in some
of the literature, the transformed functions are not called Fourier transforms
at all. Instead, they are referred to as characteristic functions (Papoulis, 1984;
Panofsky and Dutton, 1984).)

Under Gaskill’s transform definition, a dilated and shifted function transforms
as

rtzx F )
£ (2£22) L ol exp (i2n06) Fla), ®
where =]:> denotes the Fourier transform operation.

2.1.2 Transforms of Selected Functions

Within this framework, the transform properties of several functions are of
interest. The first of these is the Gaussian function:

Gaus(z) = e (4)
The Gaussian is one of several functions which are invariant under Gaskill’s

transform: r
Gaus(z) => Gaus(§). (5)




We can use a limiting version of this function in our study of the properties of
the impulse function, also commonly known as the Dirac delta function.* The
properties of the Dirac delta function flow from the defining equation

/ £(9) 8y — ) dy = f(z) (6)

for suitably smooth functions f(z). This definition is also referred to as the
delta function sifting property. We can study the Fourier transform properties
of a delta function using a limiting form of the Gaussian function in combination
with the dilation propertics noted in cquation (3). The dclta function can be
written as )

o(z) —(11_1)11 I-aTGaus (Z) (7)
The area under the function on the right-hand side (RHS) of equation (7) is unity -
for all nonzero a. Integration of this function times f(z), as in equation (6),
yields an approximation of f(0) which improves as ¢ — 0. In the limit, this
result is written using the notation in equation (6); however, strictly speaking,
the limit cannot pass through the integral operation, as equation (7) does not
satisfy the condition of bounded convergence (see the previous footnote). One
way to think of the delta function in practical terms is as a sampling function
whose operation is extremely rapid when compared to the rate of variations of
the sampled function f(z).

The delta function also features a scaling property such that

5(“’ ;J“") = |a| 6(z — zo). (8)

Finally, based on the dilation rule (equation (3)), we can transform the delta
function as

§(x) L lim Gaus(az) = 1. 9)

The § function and its properties are necessary to understand the various features
and properties of Gaskill’s “comb” function:

a

comb (“’”"”0) = |a| f: 8(z — zo — na). (10)

n=—oo

A rigorous treatment of the delta function involves the use of generalized
functions (Kolmogorov and Fomin, 1970). The approach taken here views
equation (6) as a notation representing the linear functional L, (f) = f(z) rather
than an actual integral.

[Sa}
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The name for this function (characteristic of other Gaskill function names)
evokes its visual appearance. In this case, the comb consists of an infinite series
of delta “tines” occurring at separation intervals |a| along the x axis.

The comb function is also invariant under Fourier transformation:
F
comb(z) == comb(§). - (11)

Gaskill’s (1978) discussion of this rclation is rather detailed (pp. 205-206)
and will not be repeated here. In it, Gaskill admits to ignoring “the
Dirichlet condition that prohibits impulsive behavior in the function to be
expanded.” The result is thus not a rigorous proof, but can be made so
using careful application of the theory of generalized functions (Kolmogorov
and Fomin, 1970).

Using the comb function, a uniformly spaced sequence of delta functions will
have a particularly simple form in frequency space:

Z d(z —na) = |al comb (a) écomb(a{). (12)

n=—oc

2.1.3 Convolution and Cross Correlation Operations

Given the form of the Fourier transform we see immediately that multiplication
of a function by a constant scales the Fourier transform of the resulting product
by the same constant. We have already considered dilated and shifted functions
in the previous section. However, there are two other linear operations of
particular interest which have unique Fourier transform properties. These are
the convolution and cross correlation operations.

For two square integrable functions, f(x) and g(z), defined over the x axis, we
define the convolution operation as

f@)9@) = [ 1@ (e~ a)da. (13)
For the cross correlation operation we write
f@r9@) = [ fa+D)g@da= [ f@)gla-)da  (14)

Gaskill notes (equation (6.11)) that while f(z) x g(z) = g(z) * f(z), the cross
correlation operation does not commute (equations (6.46) and (6.48)):

f(z) % g(z) = f(z) * g(—=) # g(z) * f(—x) = 9(z) % f(2)- (15)



Under Fourier transform (Gaskill’s Table 7.2) these operations considerably

simplify:
)+ 9a) > F(O C(O) o
f(z) » g(z) = F(£) G(—¢).
On the other hand, products of functions transform as
z, :
f(z) g(z) = F(£) » G(£); an

£(z) g(~2) L F(&) % G(e).

2.1.4 Extension of Gaskill’s Methods

Gaskill extends his one-dimensional analysis to two dimensions in order to use
this theory in Fourier optics applications. We can extend these results to three
dimensions in a similar manner. For example, a three dimensional version of the
delta function becomes

8(z, y, 2) = 8() 6(y) 6(2). (18)

Similar extensions exist for other one-dimensional functions.

A final feature of note is a consideration of the units by which the original
functions are represented versus the units of the transformed functions. As
we shall see, the units associated with series coefficients in the Fourier series
representation of a function are the same units as the original function, whereas
the units of the transform of a function f(z) consist of the product of the
original units of f(z) times the units associated with the variable x. Integration
with respect to the variable £, whose units are the inverse of z, removes this
dependence during the inverse transform process.

2.2 The Fourier Series

In the representation of periodic functions, p(x), a Fourier series is usually
employed. Consider a real-valued function, p(z), which is periodic over intervals
of length X:

p(z) = plz + mX), (19)

where m is any integer.




2.2.1 Transform Definition

Let the Fourier series representation of this function be given by

p(x )—a0+2z [a, cos (27;”) +by sin(mgfl)}. (20)

This form was chosen to closely track Gaskill’s Fourier method. Based on
orthogonality relations among trigonometric functions, we can evaluate the
coeflicients a; and b; as

X/2

1 2mxl
o=+ / p(z) cos (T) dz; (21)
—-X/2
X/2 l
2
b= X / sm( m ) dz. (22)
—X/2

We choose the region of integration symmetrically about the origin for reasons
that will become clear later in the discussion.

The factor 2 appearing in front of the summation in equation (20) can be
removed by translating these results into complex form using Euler’s formula:

e’ = cos(0) + i sin(6), e % = cos(f) — i sin(f), (23)
where 7 is the imaginary root, i = /—1. Rearranging, we have,

¢if 4 =19 it _ —if
=g

The introduction of this formula into cquation (20) lcads to the complex form
of the Fourier series, with the terms

2 [a; cos (2mx&;) + by sin (27z&;)] = P, 275 . P emi2meh (25)
where & =[/X and

cos(0) = (24)

Pl:(l[—'l:b[; E*:(Ill—i"l:b[. (26)
A superscripted asterisk denotes the complex conjugate operation.

The complex form of the Fourier series is then

plz) = Z Py exp (i2r&x), (27)
=—o0
X/2
P = -51(— / p(x) exp (—i2n§z) dx. (28)
-X/2

Because p(z) is a real-valued function, the cocfficicnts P, obey the Hermitian
property (P_; = P ), as may be inferred from equations (25) and (26) above.




2.2.2 Fourier Series Convolution and Cross Correlation
Two important related operations involving the Fourier series are again
convolution and cross correlation. For the convolution operation we write

X/2
1
o) = @) o) = 5 [ f@)gle—a) e’ (29)
—X/2
The cross correlation operation is given by
X/2
1
o) = 1@ 9@ =5 [ 16 +a)ge)ds (30)
—X/2
This function becomes an autocorrelation if g(z) is replaced by f(z). Notice

that these operations avoid introducing the units of  into the resulting function,
unlike the continuous versions in equations (13) and (14).

We are interested in how these two functions transform: Assume f(z) has a
Fouricr scrics with cocfficients Fj, and g(z) has a scrics with cocfficicnts G;. We
represent the Fourier transform of the cross correlation by a Fourier series with
coefficients Q:

X/2
~ 1 .
Q= X / q(z) exp (—i2n z &) dx
-X/2
X/2 X/2 (51)
L f 4
X / _)1(7 / f(z' +z)g(z")dz'| exp(—i2nx &) dz.
—-X/2 -X/2

Multiplying by 1 = exp (i27 2’ &) exp (—i27 ' &), the order of intcgration can
be reversed, and a new variable z”/ = z’ + = defined. Holding «’' constant in
the outer integral, we wish to intcgratc over z in the inner integral. Since z’
is constant, dz — dz and we may integrate the inner integral in terms of z",

leading to
X/2 X/2 :
~ 1
Q= X /g(:p') % /f(m”) exp (—i2nz"¢;) dz | exp (i2nz'¢)) dz’. (32)
-X/2 -X/2

The inner integral may then be evaluated to the constant Fy, which can then be
factored out of the remaining integral.

X/2
- =11 . .
Qi =F ¥ / g(z') exp (i2nz' &) do’ | = G = FiG]. (33)
—X/2
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In the case of an autocorrelation, note that F f"l* = is nonnegative.

The procedure for evaluating convolution series coeflicients, Cl is similar and

results in series elements
C = F,G,. (34)

These forms are relatively close to Gaskill’s results given in equation (16).
There, the transform of the convolution equalled the product of the individual
transforms. Here, the convolution coefficients consist of products of pairs of
appropriatc cocflicicnts of the individual transforms.

Let us now consider the extension of these results to three dimensions. Define
the form of a transform for the function f(z,y, z) as

=3 3 Y Fmnew (205 b)) (35)

l=—0oc m=—0C N=—0C

The Fourier series coefficients are evaluated via

X/2 Y/2 z/2

Fimn = XYZ /dx / dy / dz f(3) exp( i2n 8- flmn), (36)

-X/2 -Y/2 -Z]2

where the two vectors are given by

. . . - - l . n .
§=xi+,yj+ zk, &mn = fz-l— Y 7+ ?k (37)

where 2, 7, and k are unit vectors oriented along the z, y, and z axes, respectively.
The dot product operation inside the exponentials is thus shorthand for

Lo lz m nz
S'ﬁz,m,n= X+7y+7. (38)

Since the functions we will be considering will be real-valued, the resulting three-
dimensional array of points Fj m, , will exhibit a three-dimensional Hermitian
property: _ _

F—l,—m,—n = I’T,tm,n' (39)

Also, when the signs associated with the subscripted indices are not specifically
indicated, it will be expedient to write

Fl,m,n — Emna gl,m,n — €lmn1 etc. (40)

We may 1mag1ne that the Fourier series coefficients Fim, are assomated with

specific points, Elmn, in a frequency space denoted by general vectors £ As
the size of the periodic volume V = XY 7 expands, volume dimensions X,




Y, and Z expand, resulting in closer spacing of the sample points within the
frequency space. There are obvious advantages to closer spacings of points as
this enhances the resolution of the transformed function. As the number of
sample points increases, the magnitude of each sample point simultaneously
decreases according to the factor 1/V = 1/(XY Z). The decreasing magnitude
of individual sample points is thus exactly compensated by the increasing density
of sample points.

2.2.8 Transforms of Periodic Functions

In studying the connection between Gaskill’s Fourier transform methodology and
the Fourier series representations just discussed, we now consider how Gaskill’s
Fourier methods handle periodic functions. To begin this discussion, consider
the Fourier transform of a smoothly varying function, f(z), convolved with a
delta function. From the rules derived in section 2.1 we have

6(z) * f(5) 51 x F(€) = F(©). (a1)

Thus, the delta function acts as the identity operator of the convolution
operation, just as zero is the identity operator under addition and one is the
identity operator of multiplication.

Consider then, the convolution of f(z) with an offset ¢ function:

F . £
d(z — o) * f(z) = exp(—i2wzo &) F(§) = f(z — x0)- (42)

We find, then, that convolution of f(z) with the offset delta function is equivalent
to positionally shifting the original function f(x) by the distance z,. For suitable
functions f(x), satisfying

b
/ @)z <o, |f(z)] < oo, (43)

where a and b are limits such that f(z) = 0 for z < a and = > b, we then find
the convolution of f(x) with an appropriately scaled version of Gaskill’s comb
function yields the periodic function, p(z),

1 T
p(z) =plz+ X) = f(z) * % comb (3(—) . (44)
For the sake of simplicity let us assume that f(z) = 0 for all |z| > X/2.* Thus
individual copies of f(z) spawned by the convolution with the comb function
will not spatially overlap.

Technically, a and b could occupy any interval along the real axis and we need
not have b — a < X. The simplifications involves establishing symmetric limits
for a and b about the origin.
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From equation (16), we can see that p(z) Fourier transforms into

1 T\ F
f (&) * 5 comb (f) <, F(€) comb(X€). (45)
Using the definition of the comb function, we may then write
F F(§) < !
P($)=>P(§)=*X—l;5 E- %) - (46) -

Note that while F(€) was defined at all frequencies, the function P(¢) is only
nonzero at unique frequencies, separated by intervals A€ = 1/X. Further note
that because f(z) equals zero outside the bounded region —X/2 < z < X/2, we
may rewrite the integral for F'(§) as

eS) X/2
F(¢) = / f(z) exp(—i2wx &) de = / f(z) exp(—i2w z €) du. (47)
—o0 -X/2

Comparison between this result and equation (28) reveals a correspondence
between the Fourier transform representation of a periodic function using
Gaskill’s Fourier transform, and the Fourier series representation described in
section 2.1. The two transforms are related through the equation

- F{I/X

5 FU/X)

X

This can be shown by deriving a formula for p(z) starting with Gaskill’s inverse
transform:

(48)

(o.0)

pa) = [ P exp(i2mae) de

=00 oo (49)
LS U o (100, L)

l=—oc

= i ——-—Fﬁfl) exp (i2nz§).

l=—cc

The final form of this equation corresponds to the complex form of the Fourier
series (equation (27)) using the translation law contained in equation (48) above.
We thus have a direct method of comparison and inter-transformation between
two different Fourier methods for periodic functions.

This is a key result-the Fourier series is merely a representation of the Fourier
transform when considering periodic functions.




2.3 The Fast Fourier Transform

The FFT is simply a method of calculating a discrete Fourier transform that
uses a series of acceleration techniques originally developed by Danielson and
Runga that were later popularized by Cooley and Tukey (cf. Ludeman, 1986).
Ludeman’s treatment of this technique is rather thorough and is followed closely
in this text. Another standard treatment is found in Press et al. (1992), but
involves a different sign in the complex argument. Regardless of the treatment,
the key feature of the FFT is that a method has been found whereby the number
of complex multiplications required to transform a data set can be significantly
reduced by processing the data in a specific series of stages. The amount of time
savings is proportional to the data set size: The FFT process requires on the
order of N In N complex multiplications compared to N? such multiplications
for a straightforward discrete Fourier transform. As a result of this reduction,
nearly all transform calculations performed digitally utilize the FFT procedure.

The reason for our present interest lies in standard descriptions of refractive
turbulence, which are always in the form of a power spectrum (a Fourier
frequency domain representation). These spectra form components of functions
(described in sections 4.3 and 4.4), which must be inverse transformed using
the FFT. Difficulties arise when one attempts to translate the power spectrum
into a digital representation compatible with the FFT. This section lays the
groundwork for that translation task.

The FFT process itself is a fast version of a discrete Fourier transform. And
the discrete Fourier transform is simply a band-limited version of a Fourier
series. The reason for the band limit is due to the finite number of samples
in a digital data set. We let N be the number of samples of data in our data
set. These samples are normally assumed to be point measurements separated
from one another by some interval Az. Tn our case we are interested in spatially
separated data so Az has dimensions of distance. Because the FFT is related to
the Fourier series method, it is assumed that the data is periodic. The period
used is X = N Az.

For compatibility with the Fourier transform and series definitions, let us assume
that the N samples are centered around an index value of zero, corresponding
to the point z = 0. Numerically these points are assigned indices starting at
~N/2 4+ 1 and continuing through index N/2. Call the index variable n, and
assume that each of the IV samples is a measurement of some underlying physical
process, f(z). Let us call the nth sample of this process f (n), corresponding
to the value of f(z) at location z = n Az. Assume for the moment that this
sample is taken instantaneously.

13
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We should then be able to approximate the computation of a Fourier series
coefficient (equation (28) via the following process:

X/2
F = 51(‘ / f(x) exp [~i2n&z] dx
~X/2
L M
R~ Z f(n) exp[—i2n IAE nAx] Az
n=—N/2+1
N/2 (50)
1 A _ 1 X1 X
=% Z f(n) exp [—z27rl %" N] N
n=——N/2—|-—1
N/2
1 2 2mwln
= Z f(n) exp [wz N ]
n=—N/2+1
= F(l).

Here, the integration over the z interval has been approximated using a
step interval Az = X/N and assuming that the sample value approximately
represents the value of f(z) over each interval.

We used a change of notation, referring to the approximations using the
symbology F(l), because the sampled versions are qualitatively different from
their continuous cousins. For one, the last form of the computational equation
involves the quantity 2nln/N in the exponent. The computation of the F’(l)
coefficients has thus lost all connection to the period length X dependence.
Hence it is necessary to do external book keeping to keep track of the relationship
between the indexed frequency results and their physical meanings. Further,
because the data are no longer continuous, unlike the Fourier series coeflicients,
the series of F'(l) coefficients only have N unique values. We can see this by
looking at frequency coefficient ﬁ’(l + N). We find that it has the same value as

coefficient F'(I). This is because

exp [— (ﬂ(z\;f—”")] = expli(zmn)] exp |-i (77 ")]

-l (5]

since exp[—i27n] = 1 for any n. One may therefore attempt to calculate as
many spectral coefficients as desired, but only the first NV values will be unique.
All others will be periodic duplicates of the first N results.

(51)

We may simplify our writing of the transform operation by the introduction of
the so-called “twiddle” factors, W]\‘,’:

N/2
~ 1 ~
F() = i Y fn)WR, l=-N/2+1,..,N/2; (52)
n=—N/2+1




where

. 2mnl
Wn =exp (—i2n/N), Wi = exp ( 7]:? > . (53)

The range of [ values has also been chosen symmetrically about the origin [ = 0.

We now show that the inverse FFT process is given by

N/2
fmy= > FOywWy™,  n=-N/2+1,..,N/2. (54)
=—N/2+1

This relationship can be ascertained as correct by subbtltutlng the definition of
F (1) into the equation for f(n):

fio = ) exo (i),
Z [ Zf ) exp <—z’2%’l)J exp (iz?\?l) , (55)
_Zf(n’) Z [ 21rl(n~n’)]

Due to the orthogonality between different elements of the complex inner
summation,

N/2

Y exp [z M] =N§", (56)
N
I=—N/2+1
where,
m_ )1 l=m
& _{0, I #m. (57)

Here, ;" is the Kronecker delta function with | and m integer arguments. In
effect, equations (56) and (57) are the mathematical expressions of a geometrical
argument. The N components of the summation in equation (56) represent
the N complex roots of the equation zV = 1. These roots are arranged
symmetrically about the origin in the complex plane. When summed these
roots cancel one another out in all but the case where N = 0.

Using the Kronecker delta notation we can rewrite the RHS of equation (55) as

Y fm)er =f(n), QED. (58)

Note that 6”" has the same sifting properties with respect to summation that
the Dirac delta function has with respect to integration.
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There are, however, problems that arise with respect to the FFT. These
primarily focus around the limited nature of the data set in terms of the number
of samples, N, and the finite interval, Az, between samples. Due to the limited
number of samples and their assumed periodicity, using raw data one often
encounters jump discontinuities at the ends of the data sets. To limit the
amount of spurious noise that would be introduced to the spectra if this data
was transformed in raw form, the data is nearly always “windowed” (Harris,
1978; Ludeman, 1986). The windowing process involves multiplying the data
set by a function which tapers to zero at both ends, resulting in an imposed
periodicity. :

The second effect relates to the finite intervals Az and X. Because of the
finitc number of samples, the minimum resolvable frequency is 1/X and that
maximum unique frequency is N/(2X) = 1/(2Az), which is also referred to
as the Nyquist frequency. Usually the Nyquist frequency is used to establish a
requirement for low-pass filtering of the input analog signal to remove higher
frequency content. Signals arriving with energy content at higher frequencies
than the Nyquist frequency will be aliased into lower frequency portions of the
computed spectrum.

In our problem, windowing is not necessarily a concern because we begin in the
transformed domain and inverse transform to the real domain. The resulting
real function is therefore guaranteed to be periodic. However, we must ensure
that the size of the domain is sufficient to adequately characterize the turbulence
structure, including outer scale effects at low frequencies and inner scale effects at
high frequencies. Within the surface boundary layer, the length scales associated
with turbulence extend from about an order of magnitude smaller than inner
scales of several millimeters (Tofsted, 1991) to outer scales measuring up to
dozens of meters (Tofsted, 2000). Means of handling these requirements are
discussed in chapter 4 when considering generation of phase/deflector screens.



r

3. Optical Turbulence Structure

In chapter 2 we considered three related transform methods useful for describing
real, periodic real, and sampled periodic real functions, respectively. We
discovered that the Fourier transform can be related to the Fourier series of
a periodic function through use of Dirac delta functions. We also discussed the
similarity in form between the FFT and the Fourier series. However, we must
now develop a connection between results contained in the optical turbulence
literature and deflector propagation screens discussed in chapter 4.

Relating these two literature sources is not simple. The FFT method assumes
the function being modeled is periodic over some fundamental volume V.
Conversely, the optical turbulence literature generally derives results involving
expectation values for aperiodic functions defined over all space. Hence, rigorous
evaluation of expectation values would require an averaging operation evaluated
over infinite volume.

To avoid confusion between the methods described in this chapter and those
discussed in the previous chapter, we will use position vector 7 instead of s
The primary quantity of interest in this analysis is the variable n, the refractive
index in the earth’s atmosphere. One very useful spatial structure property of
n is the spatial covariance function, I';,, given by (Goodman, 1985)

P (72, 72) = ([n(7) — (n(71))] [n(72) — (n(72) ])

(59)
= <n(ﬂ) "(Fz)> - <n(F1)><n(F2)>,

where angle brackets (()) represent expectation operations, and vectors 7} and
9 represent two positions in a presumably infinite medium.

Modcling the volume as infinite in size usually lcads a homogencity assumption
which I now introduce. Howcver, I make this approximation while recognizing
that it has limitations and may need to be altered in the future. The problem is
that homogencous turbulence is not physically rcalizable (Hinze, 1987). Hinze
then proceeds to considered the degree of damage caused by maintaining this
assumption. Hinze’s following commentary observes that, far from damaging,
inhomogeneities are necessary to maintain the level of the turbulence itself. Due
to dissipation at small scales, energy must be introduced at the large scales to
maintain the energy cascade across the inertial subrange. When this energy
is unavailable the turbulence level decays. Though a significant consideration
from the point of view of models to describe the turbulence itself, the amount
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of energy needed to maintain the cascade is not large compared to the energy
maintained in the field itself, so the fractional error is relatively small.

Granted these problems with the homogeneous assumption, we nevertheless
employ it to avoid major complications in the imathematical analysis. The
homogeneous turbulence condition involves assuming that the mean refractive
index is constant with position and that the structure of the turbulence is
also constant with position. The first of these conditions can be stated
mathematically as, ng = (n(7)) = (n(7:)) in equation (59).

The second condition states that T',, is dependent only on the vector difference
’Fz -— 'Flt

Ty, (71, 72) =Ty (7), T =7y — T1. (60)
A further consequence of the homogeneity assumption follows when we parse
the refractive index into its mean and fluctuating components:

’Il(fli,y, Z) =ng+ Tll(IU, Y, Z). (61)

From the definition of the covariance in equation (59), as long as the mean
refractive index is constant with position, we can write

L (7) = {ma(F1) ma (7 + 7)) (62)

The covariance function T',, is thus an autocorrelation statistically averaged
across all possible realizations of the nq(7) field.

Because of the homogeneity property of the ny field, and because its second
order statistics are assumed uniform with position, we can show that

X/2 Y/2 Z/2
> ; (63)

rn(g)=3(—ly—z</ / /nl(gl)n1(§1+§)d§1

\_X/2-Y/2—Z/2

where X, Y, and Z are the dimensions of a finite volume.

Following methods of stochastic integration discussed by Stark and Woods (1986)
and categories of random processes such as discussed by Goodman (1985), as
long as the n; field is strictly stationary up to fourth order joint probabilities,
we may pass the expectation operators through the integration operators and
obtain

X/2 Y/2 ZJ2 >

</ / / n1(51) na (81 + 5) d5y

—X/2-Y[2-2/2

:./ / / (ma(30) ma(5 + ) 5y =./ / / T\ () 5y (64
=T (3) ///ds’l = XY ZT,(3).




The XY Z volumes then cancel and equation (63) is shown to hold.

Let us now write the volume integration associated with equation (63) as

A(3) :'/'/;/n1(§1)n1(§’1+§')d5"1.  e9)

Rewriting the original equation, we have

() = 400 (66)

If it were possible to extend X, Y, and Z without limit, we note that A(5) then
appcars as an autocorrclation function and we could Fourier transform A such
that

(5):>N(f = Ny (€) Ni(-€). (67)

N; ({) here would represent the Fourier transform of the n,(5) fluctuation field.
Unit analysis reveals that R has units of volume squared (m®) while N; has units
of m3.

Unfortunatcly, this procedurc is not possible. The resulting integral definition
for A would diverge for any non-zero value of I',(5) such that the ratio
(A(3))/ XY Z remained non-zero. Because of this limitation, the most direct
method of simulating the effects of turbulence (by directly simulating the
fluctuation field n; via its Fourier transform) is unavailable.

3.1 The Refractive Index Spectrum

It is in the homogeneous form that we normally find the relationship between
the covariance and the refractive index power spectrum, ®,,:

@, (R) = (51;)3 /f/ Iy (7) €% d7. (68)

This relationship has the form of a Fourier transform, but it is immediately
obvious that it is not in the same form as equation (1). The difference is in the
change of conventions between the standard used in the turbulence community
and the standard used in writing the FFT and Gaskill’s form for the Fourier
transform. This discrepancy was a major reason for writing this report in the
first place. To resolve these differences, we will develop the refractive index
spectrum according to the standard methods used in the turbulence literature
first, and then find the means of representing ®,, in a form compatible with
Gaskill’s Fourier transform in section 3.3.

—

The quantity £ is called the spatial frequency vector. Its magnitude, the
spatial frequency &, is given in units of radians per meter. The refractive index

19




20

covariance can be recovered from the refractive index power spectrum through
the inverse transform relationship

T, (7) = /77 ®,, (F) e TR dR. | (69)

The power spectrum, ®,,, is also often referred to in statistics literature as the
characteristic function of T',, (Papoulis, 1984; Panofsky and Dutton, 1984).

As a further simplification, it is often assumed that the turbulence is isotropic.
In this case only the magnitudes, r and &, of vectors 7 and K, respectively, are
significant. By integration over the angular variables in equations (68) and (69),
these three-dimensional integrations can be simplified to the one-dimensional
relations (cf. Beland, 1993):

B, () = (i)g Zrn(r) SINTE) 42 gy (70)

27 TK

sin(rk)

4mK? dk. (71)
TR

I'n(r) = /OO‘I)n(H)
Q

In Tofsted (2000) the propertics of the outer-scale-influenced refractive index
spectrum were described using the formula

Ay (Lor)? L3 (1= A1) (Lor)* £)°
17/6 23/6 ’
[1 + (La n)z] [1 + (Lp n)z]

where C2 is the refractive index structure parameter, having units of m~2/3; the
constant A; was found to have the value 8.2; and £, and L were found to be
related to the outer scale through
L, =2.0741L,; Ly = 2.4767 L,. (73)
Bn is a constant of integration,
5 22/31(5/6) :
= — ———— ~ 0.033, 74
g 36 w3/21'(2/3) (74)
where the I" functions here refer to Euler’s gamma function, defined by

(I)n('{’) = Bn 0121 (72)

[e e}

I'(z) = / e~ t1*ldt, x>0, (75)
0
such that T'(k + 1) = kT'(k) = k!

This spectral form provides a more accurate model of the turbulence spectrum
in the vicinity of the outer scale. Unlike the misnamed von Kdrmén spectrum,
which approaches a nonzero constant value at zero frequency, this spectrum
correctly approaches zero at k = 0, consistent with von Kédrmén’s original intent
(Hinze, 1987; von Karman, 1948).




3.1.1 Outer Scale Definition

In Tofsted (2000) I developed a more realistic refractive index spectrum based
on data collected during the Kansas 1968 experiment. Based on that analysis I
set the outer scale, L,, based on the point at which the knee of the new spectrum
significantly departs from the standard Kolmogorov spectrum (Kolmogorov,
1962), symbolized by ®,x. To identify this point, let Ky = 1/L, equal the
frequency associated with the outer scale. Then define the outer scale as that
point in the spectrum, where

1 .
B, (50) = 5 Pux (50). (76)
The Kolmogorov spectrum is given by the form
D, (k) = Bn C2 k7113, - (77)

This form assumes both an infinite outer scale length and an inner scale length
of zero. Hence, the Kolmogorov spectrum is applicable for the inertial subrange
portion of the spectrum, and this is normally how it is caveated, but in practical
applications involving integrations over the entire spectrum this caveat is usually
ignored.

3.1.2 Covariance Evaluation

We can explicitly evaluate the covariance function I',(r) for the outer-scale-
influenced spectrum through direct integration. From the form given for ®,(x)
in equation (72), it is expedient to identify two functions

4

Ka

G (1) = 4 / Sin (fa Ka) 50 (78)

] @+ raka

kS sin (rp, Kp)

1+ r2)%/C ok

G (rp) = 4n 7

0

dlﬁb, (79)

where 7, =7/L4, Ko = K Lo, o = 7/Lp, and kp = K Lp.

To solve for functions G; and G2, one could use integration by parts. The
term kdk/(1 + &2)” can be integrated directly, through the change of variables
z = 1+ k2. By this approach the exponent of the k term in the numerator
is reduced. The resulting terms can then be integrated using Gradshteyn and
Ryzhik’s (1980) forms 3.771.2 and 3.771.5. Waterloo’s Maple 6 software was
used to initially evaluate these integrals. These results were then simplified by
combining I-type Bessel functions to produce K-type Bessel functions:

x3/2 ré/ 3

G1(ra) = 37T (1776)

[3K1/3(ra) — 7a Ka/3(ra)] ; (80)
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1721/3T(17/6)

Here, T'(r) is the gamma function of argument r, and K,(r) is the modified
Bessel function of the second kind of order o and argument r (cf. Kreyszig, 1972,

pg. 134).

The covariance function can then be written

Gy (1p) = [(377 +45) K13(re) — 2676 Kays(rs)] . (81)

(1) = B C2 [Alcg/3 G: <—£—) + (‘1 — Ay L2 a, (—E—)} . (82)

a b

3.2 The Refractive Index Structure Function

22

The behavior of the covariance function in equation (82) can be compared with
the behavior of the Kolmogorov spectrum through the refractive index structure
function, D, (7), defined as

Do) = {In(3) = n G+7)°). (83)

Application of the isotropic and homogeneity conditions reveals that D,, can be
written as a function of |7] only. Then, D, (r) and 'y (r) are shown to be related
through

Dy (r) = 2[T4(0) — T (r)]. (84)

The use of D,(r) rather than I'y(r) permits comparison between the outer-
scale-influenced spectrum and the Kolmogorov spectrum. Different covariance
functions, T',(r), cannot be compared directly because the Kolmogorov
spectrum yields a singularity at I',,(0), indicating its overall variance is infinite.
Nevertheless, Tatarski (1961) and Clifford (1978) showed that the structure
function for the Kolmogorov spectrum can be evaluated directly from &®,, without
evaluating I',, first. Following this approach, one finds the Kolmogorov form of
the structure function to be

Dok (r) = C2r?/3, (85)

Normally this result is caveated such that only separation distances £, < r < L,
are considered valid. Similar restrictions are applied to the range of valid &
values in the Kolmogorov spectrum itself. For example, Tatarski (1961) assigns
ko and K, referring to outer and inner scale limits such that kg < K < Kp,.
These spectral limits define the bounds of the so-called inertial subrange.
However, as mentioned in section 3.1.1, the entire spectrum (0 < k£ < oc) is
often integrated when evaluating the effects of the Kolmogorov spectrum in
various propagation calculations. It is for this reason that when considering
the Kolmogorov spectrum in the remainder of this document, I have chosen




to impose the full consequences corresponding to use of the entire Kolmogorov
spectrum to highlight the deleterious effects.

The first of these effects can be seen when comparing plots of structure
functions based on the outer-scale-influenced and Kolmogorov spectra, D, (r)
and Dy (r) respectively, in figure 1. For small separation distances r < L,
D,(r) and D,k(r) are approximately equal. As r exceeds L, the outer
scale limited structure function levels off to a finite maximum value 2T, (0).
Using the complete Kolmogorov spectrum, we find that 'y x(0) = co. Hence,
the Kolmogorov structure function increases without limit with increasing
separation distance r.

— Kolmogorov Spectrum
~ Proposed Spectrum

Structurc Function (D,(r/L,))

0 2 4 6 8 10
Normalized Separation (r/L,)

Figure 1. Comparison between Kolmogorov and outer-scale-influenced structure
functions.

As illustrated in figure 2, as the size of the outer scale increases, so does
the asymptotic limit of D,(r), providing a close approximation between the
Kolmogorov D,k function and the outer-scale-influenced D,, function for longer
separation distances. This figure also indicates that the rise distance required for
D, (r) to reach some fixed percentage of its asymptotic value is also longer as L,
increases. To adequately model correlation effects in a prf)pagation simulation,
one must contain nearly all this variation within the fundamental volume V
of the modeled region. Since the rise distance increases with increasing L,, it
naturally implies that large L, requires larger modeled volumes to adequately
simulate the influences of the outer scale in such propagation situations.
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Figure 2. Comparison between different outer-scale-influenced structure functions
with varying outer scale lengths.

3.3 Transforming the Covariance Function

We are now in a position to compare the Fourier-like characteristic functions
used in the standard turbulence theory with the Fourier methods discussed
in chapter 2. Due to the difference in form between the standard form of
presentation of the spectrum as opposed to its means of implementation in the
standard form for the FFT, it is necessary to make a transformation between
the two forms. In particular, we need to compare the transformation pair

B, (%) = (51;)3 /]7 T, (7) &% dF, (86)

T, (F) = /]7 &, (R) e "R dR, (87)

which we simplified to

o0

D, (k) = (%)3 / I‘n('r.) il—r—l;:—ﬁ) 4rcr? dr, (88)

=]

Th(r) = / ¢n(n)M4m€2 dx, (89)

0
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with the transformation pair

= /f/ I, (5) e i2" %€ 43, \ (90)
T, (5) -—-/77 v, (€) ¢ dg, (91)

which we would use if basing our methods on the techniques used by Gaskill.

Previously, we have used § and 7 to denote spatial variables in the two different
systems. What if these variables actually denote the same quantity? How then
are functions ®,, and ¥,, related to one another?

Comparing the arguments in the exponentials, we must have g = —27r§—: We
find, however, that the sign difference between these two variables is immaterial
because both ®,, and ¥,, must be radially symmetric. Thus, the magnitudes of
x and & must be related as k = 2w€. Making this substitution in equation (90),
we find that ¥,, is equal to the triple integral in equation (86), leading to a
rclation between ¥, and @,

U (€) = (2m)° @ (27E). (92)

In this form, the ¥,, values are magnified by the 83 factor because in £ space
the ¥,, function decays proportionally more rapidly compared to the ®,, k-space
representation. The difference is in the units of cycles per meter in € space versus
the radians per meter units in « space. From a practical viewpoint these results
allow us to avoid converting from ®,, to I, and then to ¥,,. Instcad, we can
rescale directly from @, to ¥,,.

Having established the relationship between ¥,, and ®,,, we may also rewrite the
spherically symmetric forms of the integral relations between ®,(x) and I',(r)
in terms of ¥,,(¢) and T'y,(s):

V(€)= / Tu(s) f‘iiz(j-;féif—)h § ds; (93)
I (s) =/‘I’n(€) q1n2(27r§f) 4 €2 dE. (94)

0

This spherically symmetric transform pair are identical (except for a change of
variables) for both forward and inverse transforms. These are thus the three-
dimensional equivalent of the Hankel transform results given by Gaskill (1978,
pg. 320) that were also self-reciprocal for forward and inverse transforms for
cylindrically symmetric functions.




4. Deflector and Phase Screens

This chapter considers the use of the functions I';, and ¥,, in generating what will
be termed deflector and phase screens. These objects are usable in two different
approaches to modeling propagation through optical turbulence: (1) Deflector
screens are useful in describing the shape distorting effects of turbulence through
a model of positionally varying tilt effects; (2) Phase screens model turbulence
effects by distorting a phase front and propagating the distorted phase front
between successive screens via diffraction limited propagation equations. This
chapter describes both propagation methods in detail, though the focus is on
the generation of the screens and deflector screens in particular.

As in chapters 2 and 3, gaps also cxist in the phasce screen literature, which
are again addressed through the derivations. For example, a key assumption
underlying the transformation from Fourier transform to Fourier series results
is typically handled through reference to prior literature. But these references
are to papers rather far afield of the current subject matter (e.g. Shinozuka and
Jan, 1972; Borgman, 1969). Due to significant differences in nomenclature and
symbology, comparison is difficult. Hence, a unified presentation is sought to
restate results that are not available in standard references on this topic. Also,
the derivation for deflector screens is completely new.

It should be noted here that the overarching goal of this rescarch is to model
the propagation of a scene (an undisturbed original image) through synthetic
turbulence. The model for this propagation assumes a radiance pattern (the
scene) is being emitted from a source region (the object plane) as incoherent
radiation from a very large number of point sources. If no turbulence were
present, the energy emitted from the object plane would propagate over a path
of length Z to an imaging system of aperture diameter D and focal length f.
The imaging system model consists of the single aperture, an objective lens,
and an image plane where the received image is detected through some sort of
quantized array. This array samples the image into regions called pixcels (picturce
elements) of single-axis angular subtense ¢, radians each. Projecting backward
through the system lens and over path length Z, each pixel in the image plane
corresponds to energy emitted from a region of size Z¢, by Z¢, in the object
plane. Even for very narrow field of view systems, each such source region must
consist of a very large number of independent emitters, in support of the concept
that the signal arises as an incoherent radiation field.

Based on this model, the remainder of this chapter describes how phase screens
and deflector screens can permit the incorporation of turbulence effects to the
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propagation scenario just described for diffraction limited optics. Section 4.1
provides an overview of diffraction and deflection propagation techniques. In
section 4.2 an analysis is performed for light passing through a slab of atmosphere
of thickness A. Perturbations in the crossing time for light entering the slab
at different transverse positions can then be modeled in terms of crossing time
correlation spectra described in section 4.3. These spectra are applied directly in
the diffraction propagation approach. The deflection method relies on a further
determination of beamn deflection effects, as discussed in section 4.4.

4.1 Propagation Methodologies

28

As pointed out at the closc of chapter 3, functions I', and ¥, cannot be dircctly
inverse transformed to gencratc a randomized volume-based ny function. If
this were so, randomized n, fields could be generated via an inverse transform
process. A propagation technique could then numerically propagate through
this volume. As will be seen in sections 4.1.1 and 4.1.2, such propagation ‘can
be modeled in two fashions, the former based on gecometric optics and the latter
based on diffraction propagation.

The geometric optics approach rcpresents an cxtension of the refractive
raytracing methodology (Tofsted, 1989b) developed to study refractive path
bending effects on tank gunnery. This method is akin to image modification
techniques later developed to study the effects of mirages (cf. Lehn, 2000;
Lehn et al., 1994; Lehn and Friesen, 1992; Sozou and Loizou, 1994) on image
propagation. Both mcthods considered only vertically stratificd atmosphcres
and only dealt with the mean refractive index structure. The development of
deflector screens, which covers sections 4.2 through 4.4, extends these effects to
three-dimensionally varying refractive index structures.

The development of the deflector screen approach is based in large part on
the foundation of the phase screen method originally developed to study beam
wave propagation through turbulence (cf. Martin and Flatté, 1988; Davis and
Walter, 1994). The original developers of the phase screen method seem to be
Fleck et al. (1975), but their published analysis contained errors. These errors
later appeared unchanged in the open literature version of their report, Fleck et
al. (1976). Regardless, in sections 4.2 and 4.3 a reanalysis of their results is
given which correctly derives their equations.

In general the term screen implies a two-dimensional object. In effect the
use of screens means that turbulence effects along the optical path are being
concentrated into planes (or screens) of interaction. The term screen is used
simply because a mesh of sample values is used instead of a continuous function
of position. Both phase screens and deflector screens have these qualities in
common, as their derivations are similar.

In this analysis we shall see the other ways in which the deflector and phase
screen approaches are similar. However in its full form, the phase screen
(diffraction propagation) approach should produce the same qualitative results




as the deflector screen (geometrical optics) approach while yielding more
accurate results. The difference is computational cost. To be accurate, the
phase screen approach may require orders of magunitude more computational
time than the deflector screen approach, yet provide only marginally different
results. As pointed out by Fried (1982), the majority of effects can be modeled
using geometrical optics methods. Though potentially prohibitive, phase screen
method results can be used in canonical cases to provide a check on the accuracy
and circumscribe the region of applicability of the deflector screen approach.

4.1.1 Geometric Optics Approach

The geometric optics method is similar to the refractive raytracing calculations
made by the EOSAEL (Electro-Optical Systems Atmospheric Effects Library)
module REFRAC (Tofsted, 1987, 1989a, 1989b). This module was originally
developed to study the effects on tank gun accuracy of vertical refractive index
gradients caused by surface heating and cooling. Here, though, the technique
is extended to include gradients of refractive index in both the vertical and
horizontal directions.

Let us begin by defining the propagating radiation in terms of a small angle
approximation. Under this approximation we assign the main direction of
propagation as lying along the positive z axis. Let us identify a unit vector
) as the direction of propagation, consisting of the three components:

~

Q= (Qz; Qy’ Qz)a

. Qg ay 1 (95)
\/a_?c—!—ag-i-l, \/aﬁ—i-ag—i—l’ \/a§+a§+1

Since the propagation is almost entirely in the forward direction we may
approximate the vector by

~

O (00 00 1); gl layl < 1. (96)

Since the z component of this unit vector is always approximately unity, we may
ignore this component and study the tilt induced on the two-dimensional vector,
a = (ag, ay).
As is described in Tofsted (1989b), the unit Poynting vector associated with
a propagating wavcfront is just . We may modecl the tilts induced on this
wavcfront as it passcs through a non-uniform atmosphere by considering the
gradients of the refractive index oriented perpendicular to this wave. Since the
wavc is propagating in primarily the z dircction, these gradients arc located
in the (z, y) plane and affect the vector & The effects of these tilts can be
described by the equation

dd 1o

—=—-Vin 97
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where s is a path parameter measuring propagation distance of a point along
the transverse plane in the direction of Q and V | is the gradient operator in
the transverse plane. This equation represents an approximation of the results
of Born and Wolf (1964, pg. 111) under the small angle assumption. Born and
Wolf relate their equation to the eikonal equation, the fundamental equation of
geometrical optics.

In Tofsted (1989b) the refractive index was assumed to only vary as a function of
height, and this function was assumed to be attached to the surface underlying
the optical path. Thus, the beam tilts induced were limited to only vertical tilt
effects. These effects, however, were only evaluated for a range of elevation
angles. Lehn et al. (2000, 1994, 1992) independently developed means of
modifying imagery for these same effects by remapping pixels from an original
scene to raytraced positions in an image plane.

The means of performing this remapping involves the reciprocity principle.
According to reciprocity (van de Hulst, 1980), one can either propagate in the
forward dircction, from some point (pp) on the object planc in a particular initial
direction (&) and attempt to shoot (cf. Press et al., 1992) a ray through the
entrance pupil of the receiver system, or one may begin at the image plane
and propagatc a ray backwards through the volume. Eventually the backward
propagating ray will intersect the object plane at a point and in a direction that
would propagate through the receiver entrance pupil.

The use of deflector screens involves the replacement of the continuous form
in equation (97) by a discretized version. Propagation of rays between
subsequent screens is modeled as following unperturbed straight lines similar to
O’Shea’s (1985) equations for tracing between subsequent thin lenses. Beginning
at a point p,, at the mth deflector screen, we propagate a distance Z,, to the
next screen in the direction &,,:

ﬁm+1 = ﬁm + &m Zm- (98)
Passage through the deflector screen then perturbs the vector @ according to

&m-{-l = d.'rn + AA&m (ﬁm+l)7 (99)

A
AG(3) ~ %ﬁ[ /0 n1(5) dz] , (100)

where 1/n = 1/ng, since ng > n; in equation (61). Second, the transverse
gradient operator and the path integration have been interchanged from the
original form involving an integration of V ln(s*) along the path. Third, since
ng is constant, only n; appears in the gradient.

Wavefront tilt over a path increment of length A is effectively concentrated into
an effect that is applied at a central point A/2 into the slab. This means that the
propagation distance to the first slab is Z; = A/2 while the distances between




all other screens are Z, = A. Lastly, there is a propagation step to travel from
the last slab through the receiver entrance aperture and this distance is also
A/2. Of course, when using reciprocity, these steps are actually computed in
reverse order.

The deflector screen consists of a function which prescribes the values of tilts,
Ad&, as a function of position, §, of ray arrival at the screen. In essence,
O’Shea’s one-dimensional thin-lenses, ray-tilt equation is replaced here by a
two-dimensional ray-tilt equation dictated by the statistics of the atmospheric
turbulence.

4.1.2 Diffraction Approach

The diffraction approach attempts to capture amplitude and phase distortions in
addition to angle-of-arrival effects. As a consequence, the propagated field, when
passed through an optical system should produce both scintillation and blurring
of the propagated signal. Such improvements do not come cheaply, but under
certain conditions may be unavoidable for accurate calculations. However, the
computational burden may be prohibitive. Martin and Flatté (1988) required a
Cray XMP supercomputer to evaluate their results for a limited size beam.

Here, we follow the discussion contained in Martin and Flatté (1988), but modify
the nomenclature to avoid conflicts with the symbology elsewhere in this text.
We begin with radiation of wavelength A and wavenumber k = 27/ propagating
(again) in primarily the positive z direction. The complex amplitude of this field
is given by

¢ = X exp(—ikz). _ (101)

The scalar amplitude satisfies the paraxial wave equation

X
zikg—z+vfx+2k2n1x:0. (102)

To propagate through turbulence with this equation, Martin and Flatté divided
the propagation into two separate effects. First, the amplitude field propagates
a distance A through uniform media in a diffraction-limited fashion. In this
intervening space n; = 0. Procedurally, this involves Fourier transforming the
paraxial wave equation over the transverse axes z and y. This produces the
equation

X(d, 2) Ano?
- _ 1
Ep i~ X(a, 2), (103)
which has the solution
2 ZA
X(#, z+ A_) = X(d, z) exp [—ié%——] . (104)

The use of the nomenclature z + A_ anticipates the next step used to handle
turbulence effects: the phase screen application.
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As the term phase screen implies, the turbulence effects are concentrated into
so-called “screens,” or planes, of turbulence. In this case the screen is located at
2z+A. At the phase screen, a portion of the wavefront passing through the screen
at position § = (z, y) in the transverse plane is phase advanced by an amount
0(3). Since the effects of turbulence have been compressed into a screen of zero
width, there is no need to apply diffraction effects for propagation through the
screen. Thus the propagating field after passing through the phase screen is
given by

X(3,z+AL)=X(5, z+ A_) exp[i0(5)]. (105)

Combining effects, we have a four step propagating process:

1. Discrete Fourier transform the wave amplitude function X across the planc
perpendicular to z, resulting in the function X.

2. Perform diffraction limited propagation of X from the z plane to the
z+ A_ plane.

3. Use an inverse discrete Fourier transform to recover X at the z + A_
plane.

4. Apply phase screen effects to the function X at z+ A_ to pass it through
the screen to the z + A plane.

This process is repeated until all phase screens have been crossed and the receiver
aperture plane reached.

4.2 Slab Crossing Time Analysis
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Note that in the previous two subsections the quantities 6(5) and Ad(8) were
critical in evaluating the effects of the turbulence upon the arriving wave field
or front. The derivation of these quantities is the key topic of the remainder of
this chapter. To evaluate these quantities requires analysis of beam propagation
through a turbulent layer of thickness A. However, there are certain assumptions
being made: First, we are assuming that rays passing through the slab of
thickness A are travelling approximately parallel to one another. This simplifies
the propagation integrations, but ignores the divergence of rays originating from
a particular region associated with a single pixel that could pass through the
entrance pupil of the receiver. But the approximation is nearly correct and will
be used as a basic assumption throughout this section.

To assess 0(5) and A@(5) we need to first consider the fluctuations of certain
propagated quantities and their correlations at different points of entry through
the slab of thickness A. The most basic of these quantities is sometimes called
the optical depth (YT = fOA ndz) but we prefer to analyze the time required for a
ray to cross the slab (7 = fOA (n/c) dz). Here, c is the speed of light in vacuum.
n/c is thus the time taken by light to move a unit distance in air of refractive
index n.



The analysis of beam propagation statistics begins by considering a wavefront
of radiation. This same construct will be used for both the phase analysis and
for the beam tilt analysis. In the former case we may envision a propagating
complex amplitude wavefront X. Tn the latter case we consider the light divided
into a series of rays (small pencils of light, each having a small overall divergence
in solid anglc and a small transverse extent as it passes through a turbulent planc
of interest).

Our main object of consideration is the time required for an arbitrary wavefront
or ray, at a particular transverse position §, to pass through a slab of intervening
atmosphere of thickness A. This crossing time is written as

z+A

Y '
= / E(S;—Z)—dz’. (106)

The starting position of the beam is (5, z) = (z,y,z). The ending position is
(8, z+ A), where we ignor transverse displacements.

For our purposes we are not directly interested in 7. Rather, we are interested
in the quantity
z4+A

57(3) = /Mdz’, (107)

which measures the perturbation of 7 about a mean transit time. Both 7 and
o1 evaluations assume propagation along the positive z axis. Of course, 67 < T
since n; < ng. Nevertheless, the slight deviations of n; are critical in assessing
turbulence cffects.

Paralleling phase screen analyses (cf. Fleck et al., 1976), we wish to evaluate a
cross correlation function between the time of transit of two parallel rays crossing
the slab at points 57 and 85, written as

Tor (81, §2) = <6¢(§’1) 6T(§2)>

z+A 24+A . .
</ dzy / dzy n1(31, z1) n1(52, Z2)>
c c

i

(108)
z
z4-A z+A . »
_ /dz1/d22 <n1(81,21) n1(8z, Zz)>'
) c c
¥4 z

Here, the expectation operator being applied to the entire integral is passed
through the integration operators and applied directly to the n; product,
which is permissable because the bounds of the integration are unaffected
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by the expectation operator. Under a homogeneous and isotropic turbulence
assumption, we may use I'y:

3 s 1
<n1(sz, z1) nl(sz, z2)> =3 ' ( 181 — 82[% + (21 — 22)2) . (109)

We can then replace ', with the inverse transform of ¥,, (equation (91)). Also,
the vector arguments of r5, can be replaced by the difference vector, 5= (x1 —

T2, Y1 — yZ):

1 z+A z4+A oc
r5:(5) = = /dz1 / dzy //exp[i27r&'-.§]d6’
i o e (110)
x [ explizne. (o~ ) o (VP HE) e

where & represents the two-dimensional vector components of E in the transverse
plane, and £, represents the component along the propagation axis.

This form permits a change in the order of integration such that the z
integrations are accomplished first. To perform these integrations we will revert
to the variable k, = 27£, to make the mathematics somewhat simpler:

z4+-A z+A 1 A
/ dz; / dzy exp [ik,(z1 — 22)] = 2 [—:&;(Ef———)] , (111)

assuming A > 0. Fleck et al. (1976) obtain this same result through a different
method: In their discussion they introduce absolute value signs around the
difference z; — 2. Possibly this is because T, is a function of distance, 7, which
is positive definite, but this should not matter since 'y, is spherically symmetric.
Unfortunately, the introduction of the absolute value complicates the integration
such that they generate an imaginary term. They must then argue away this
imaginary term before they can arrive at a result equivalent to equation (111).

Fleck et al. (1976) then assume that as long as A is large compared to correlation
lengths of the refractive index power spectrum, and as long as the spectrum is
slowly varying, the £, integral may be approximated as

o

. 2
/ v, (7, €z) 2 [1 - COS(K'ZA)] e,
(e (5 5) 2 - dr;
= /\I/n (0, —2—;) p [1 —cos(k,A)] o (112)
v,,0 [ 2 .
o | = [1 — cos(k,A)] dk,.



Upon a change of variables, u = k,A, Gradshteyn and Ryzhik’s (1980) result
3.782 allows us to solve this integral directly, as

oC X
2 21 — cos(u)
/ o [1 — cos(k.A)] dik, = A f —[——1-;2(—] du = 27A. (113)

The approximation used in equation (112) assumed that A > L,. We
may establish some sort of lower limit on the size of A by considering the
correlations present in the function I',,. Figure 3 shows the structure of the
covariance function with distance normalized relative to outer scale L,. As
shown, significant correlations extend to approximately 10 outer scale lengths.
Beyond 10 outer scale lengths, I',, becomes negative but remains very small.
Since these correlations extend in all directions about any point, it would appear
the size of the modeled volume should be at least 20 L, along each axis direction.
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Figure 3. Covariance function normalized relative to its amplitude at zero and
normalized abscissa mcasured reclative to the outer scale length.

The size of the modeled volume is also important in that it determines the lowest
frequency that can be represented. A volume that is not large enough will not
be able to capture the form of the spectrum at sufficient resolution. We will
return to this point when considering the resulting spectrum at the end of this
analysis.




Finally, the evaluation of 75, thus far has reduced the problem from a five-fold
integration to a two-dimensional inverse Fourier transform:

oC
ron () = CA—2 //\Ifn(&’, 0) expli 2 G - 8| d&?
o (114)

- [[[222409) exgfons -an.

4.3 Crossing Time Fluctuation Spectra
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Continuing to follow the arguments of Fleck et al. (1975) we recognize
that AW, (#,0)/c? is the Fourier transform of rs,. Let us then consider
equation (108): We recognize that rs, is equivalent to the expectation of an
autocorrelation operation, where the autocorrelation operation occurs over space
and the expectation is taken over all possible atmospheres exhibiting the same
turbulence spectral properties.

The random field §7(5) thus defines the fluctuations in crossing times of waves
propagating through the turbulent slab of thickuness A. Let us assume that
this random field has a Fourier transform 7'(¢). The transform of cross
correlation 75, must therefore be somehow connected to the average of the
product T'(&) T*(&) since this product represents the autocorrelation of the field
d7(5). However, progress in developing this relationship is only possible if we
assume that d7 is periodic. :

To begin, equation (108) can be written in terms of the difference vector 5% If
we assume that §7 is periodic over a region measuring X and Y in size in the §
plane, then we can define the expectation in terms of a spatial average over this
fundamental periodic region as

X/2 Y/2
ror () = <§? / / 57(5, + 5) 67(5%) d.§'2>. (115)

-X/2-Y/2

In this form, we see that 75, includes an autocorrelation function as defined for
the Fourier series form, in equation (30). Let us denote by Ry, the Fourier
series coefficients associated with the periodic version of rs,. If we then operate
on equation (115) to generate the Fourier series coefficients associated with this
equation, we obtain

le = <Tl1n f’[:n> (116)




But we know that taking the Fourier transform of equation (115) results in

A‘Iln(o'za Ty, 0)
c? )

rs:(8) 2> R(@) = R(os, oy) = (117)
And, from extension of equation

(48) to two dimensions, we have the following
relationship between Ry, and R(5):

<3

- R(+,
Rim = _%Y—l (118)

We now have le, a Fouricr scrics represcentation of r5-. We recall from section
2.2 that the Fourier series coefficients retain the same units as the transformed
function. Therefore, R;,, has units of s2. The standard method (see Fleck et
al., 1975; Martin and Flatté, 1988; Davis, 1994; and Yan et al., 2000) of
generating the random field 7 involves generating random Tj,, values that
satisfy equation (116), and then inverse transforming. Generation of random
Tim values involves coupling an envelope function, which defines the frequency
weighting, with a white noise Gaussian random process. The resulting form for
the T}, coefficients is given by

Tlm = Tlm élm- (119)

Because Ty, is constant, it factors out of the expectation operator on the RHS
of equation (116). Because of this property, it is standard to define Gy, such

that
<é,m "7m> = 1. (120)

AT, (£, ™, 0)
=\ Bim = \/ e (121)

The Gyy, coefficients are normally represented as the sum of two zero-mean unit-
variance Gaussian random variables such that Gy, exhibit Hermitian properties:

Thus,

ai(l,m) + iag(l, m)
7 .

Fleck et al. (1975) identify the following results of the Hermitian conditioning
on coefficients a1 (I, m) and ax(l, m):

C:"'lm =

(122)

<&1(l) m) a‘2(l: m)> =0;
(a1, m) an (U, m")) = o} 67 + 6, ;" (123)
(a1, m) ao(l',m")) = &} 6 — 87" 677
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Hence, we have random variables which are uncorrelated from point to point,
and which obey the conditions

&1(1, m) = &1(—l, —m); : (124)

Ga(l,m) = —ap(~1, —m). (125)

As Davis (1994) explains, Gim “represents the Fourier transform of a grid
of uncorrelated Gaussian distributed random numbers representing phases.
The proper spatial structure function corresponding to turbulence statistics is
imposed upon the random phases...by applying a filter...” The filter function
in this casc is Tjp,.

With this Hermitian conditioning we can see that é;‘m =G —1,—m- Hence we can
directly show that equation (120) is valid:

<élm érm> = <élm é—l,—'m>

— <[&1(l,m) +i&2(l m)] [&1( ) +i&2(—l7_m)]>
V2

_<a1(l m)a;( l,—m > <7a1lm)a2 l,—m)> -
S

+<7a2(lm)a21 > 2451, m) s l—m)>

_ 141(0) +i(0) +i2(—1)
2

S

=1

These results can then be combined and used in either the phase screen
or deflector screen approaches. Equation (119) can be evaluated using
equations (121) and (122). The prior discussion in the section then reveals
that 1

Tim = 67(3) (127)

over the area XY. For the phase screen problém, we recognize that d7 represents
the extra time it takes the wavefront at position § to propagate across distance
A comparcd to a mcan propagation time 7 = Ang/c. As a result, in the z + A
plane, after the passage of time 7, at position §, instead of advancing in phase
by the average amount kA, the phase only advances by kA — kcdr/no. The
phase delay is thus

0(3) = k = o7(3). (128)
no

This phase delay appears directly in the screen propagation calculation in
equation (105). To describe the equivalent effect as measured by the deflector
screen approach, a more complicated analysis is required. This analysis is
described in section 4.4.




4.4 Beam Deflection Analysis

We now consider the evaluation of raytracing deflector screens. From section 4.3
we know how to evaluate a random field of temporal delays 67. We now extend
that analysis to determine how these temporal delays translate into beam tilts.
Consider figure 4 where we view two transversally separated points associated
with two points along a wavefront that is propagating through an atmospheric
slab of thickness A. Due to the slight differences in the refractive index for
the two paths, the transit time for each path will be slightly different. For
argument’s sake let us scparate the two paths vertically as in the figure and
assume the light travelling through the slab along the upper path takes longer
than for a ray passing through along the lower path. We denote the transit time
difference by Adr. Due to the transit time difference, light on the lower path
will be able to travel slightly beyond the end of the slab in the same time it takes
light along the upper path to transit the slab. The mean additional propagation
distance for this portion of the beam will be approximately ¢ Adt/ng, where the
contribution due to n; is assumed negligible (n; < ny).

Figure 4. Ray deflection due to differential time to cross a turbulent slab.

Due to the additional propagation of the light along the lower path, the
orientation of the wavefront of the beam will be slightly deflected by amount
A« upon transit through the slab. This assumes that the separation distance
between the two paths (Ay) is small enough that the tilt effect is the primary
modifying effect of the turbulence between these two points. The deflection
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angle can then be computed as the ratio of the additional propagation length
c Ad7/ny to the separation distance dy:

¢ AéT
=== 12
Ao . (129)

Let us now take the limit of this procedure as Ay approaches zero. Deflection
Aa remains finite upon passage of the ray through the slab, but Ay — dy and
AST — déT become differentials. The differential form of this result can then
be generalized to a two-dimensional deflection, such that

AG = S V6T, (130)
Ng

where the gradient operates in the transverse planc perpendicular to the main
axis of propagation.

Representing 47 in terms of its Fourier series coefficients Tim, Wwe see that &7
can be evaluated at an arbitrary location via

x

or(z,y)= Y. i Tiom €Xp [i27r (13(:5 n -";73’)] . (131)

l=—00 m=—o¢

In this form, the gradient operator can be evaluated directly within the Fourier
representation itself to produce

Ad(z,y) = n%WT
- or | iy ™ol 7 Az omy\]  (132)
= Z ZZZW [—X—z+ ?J] Tim exp [zzw (3&7+ 7)] )

1 m

Of course, computationally speaking, we can only evaluate Ad at a finite series
of points. Under these circumstances an FFT can be used, and intermediate
points can be evaluated using interpolation techniques. Equation (132) provides
a means for evaluating this finite grid of deflection vectors.

This result apparently concludes our analysis. However, there is a problem.
The gradient operation only applies to infinitessimally narrow rays of light. But
the light received at a single pixel site within the image plane must arise from a
finite area within the object plane. Also, the energy from this source region must
pass through a finite-sized receiver aperture. These factors indicate that finite
width beams must be considered in evaluating A&. Elements of this issue were
considered previously when evaluating beam-wave angle-of-arrival calculations
in Tofsted (1992). That document contained a derivation for angle-of-arrival
variance of a uniform cross-section beam. In that analysis the deflection angle
was determined by considering the tilt in the beam across a distance D, which
was nominally assigned to the value of the beam diameter.




A similar approach can be used here, but must be modified in light of the
imaging scenario at hand. There are three aspects to these modifications:
First, in equation (132) all frequencies of distortions were included in the
spectral summation. However, for turbulence fluctuations whose wavelengths
are comparable to or narrower than the beam width, their primary effect will
be to distort the beamn structure rather than to tilt its direction of propagation.
Even wavelengths larger than the beam width will be less effective at causing
tilt because the beam width is a sizable fraction of the wavclength. Sccond, we
must somehow define what we mean when referring to the beam width. The
emissions from the object surfaces radiate as spherical waves from a multitude
of indcpendent (incoherent) regions within the footprint of a single pixel’s IFOV
(Instantaneous Field Of View), ¢,. In the absence of excessive turbulence
scattering of the propagated wave, we may designate a volume that defines
the space through which the cnergy arising from the pixel region flows through
to enter the receiver aperture. It is the characteristic width of this volume that
is needed to describe the influence of a particular spatial frequency on the tilt
factor Aa. Lastly, we may inquire regarding the shape of the “beam” as it travels
through space. Since it is not uniformly square or circular (it metamorphoses
from one shape to the other over the course of propagating from the object plane
to the receiver aperture), it must have different effects for every different spatial
frequency at every different position along the optical axis. Moreover, even if we
considered the initial radiance pattern arising from a particular source region
in the object plane as constant in magnitude, because of the morphological
changes, the irradiance pattern would not remain constant within its envelope
as a function of path position.

Under ideal conditions we would assume the receptor area for a single pixel
would be some square region on the receiver plane (assuming square pixels).
Ignoring system blur and turbulence effects, we would project that the energy
falling within a single pixel would arise from an area ¢3Z 2 on the object plane.
Assuming each point on the object plane associated with this pixel emits a
spherical wave of radiance Iy, and that only the portion of this wave that enters
the system aperture is significant, we can model the irradiance pattern of a pixel
region in the object plane as

D2 () -1 $pZ/2 $pZ/2 s (1 17)7
wD% (2 §—(1—-2/2)s
I8, 2) =1 |—2= ’ ’ ;
(8, 2) =1 [ 1 ] dz / dy’ cyl [ Doz) ] ; (133)
~$pZ/2 —¢pZ/2
(T _J1 Irl<D/2;
() = {o, ir| > D/2. (134)

For convenience the pixel position was assumed to lie along the optical axis.

The meaning of this function is that a scaled version of the original projected
pixel shape is convolved with a scaled version of the entrance aperture shape
of the receiver. We can parameterize these results if we set P = ¢,7 and
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let Po = (1 — z/Z) P be the scaled width of a square at distance 2 just as
Dg = (2/Z) D is a scaled diameter of a circle at the same position. Using this
method, we have an irradiance pattern which transitions smoothly between a
square pattern at the source and a circular pattern at the receiver.

We can now create two dimensionless variables A = (Do — Pp)/(Do + Po),
B = (Dg + Pg)/Ar, where Ar is a single wavelength of turbulent fluctuations
(either-X/I or Y/m in equation (132)). Due to the separability of the turbulent
effects in = and y, we can evaluate tilt efficiencies for components on each axis
individually. Similar to thc approach uscd by Fricd (1965) we can cvaluate an
overall tilt cffcct on the aggregate of irradiance passing through a given layer.
We evaluate this quantity as follows: From equation (132) we extract the (I, m)
and (—=I, —m) componcnts of thc summation and combinc them to produce a tilt
effect for a single characteristic frequency. Let us then write Tim as a magnitude
M and a complex phase 6, Tiy, = M €. Considering only the z axis effects we
have the net component of A@ in the z direction of

lx my

Ml ™
Aa:r.lm(g) = 7 cos [5‘ + 0+ 2n (? + 7)] . (135)

We simplify this result by considering only a component along the z axis (m =
0). This step is necessary to simplify the mathematics, but can be seen to be
possible for any value of m by a rotation of axes. We can then write

M 2
Aawlm(g) = ——sin |0+ —’,-r-f . (136)
/\T AT

A dimensional analysis of equation (132) reveals M has units of length. To
determine the mean angular tilt of a beam, we need to weigh the amount of the
tilt (here Aag ) by the amount of energy being affected at every point in the

bcam:
[/ AF}IT((;*)ZI) (;;z) ds (137)

This evaluation determines the average deflection of the beam for a particular
value of 0, but to determine the overall efficiency of the turbulence wavelength
Ar in deflecting radiation, this result needs to be averaged over all possible
values of . Further, since Aa is a zero mean variable, it will be necessary to
consider the second moment in seeking a meaningful statistic:

Aa(r, 6) =

<'A“&2(AT)> - % 7‘562(/\T, 9) do. (138)
0

The last step in this analysis is to normalize equation (138) by dividing by the
value of the said measure when the irradiance profile approaches zero width.
Fvaluation of this case yields the limiting value M2/(2 A}).




However, we are not interested in the efficiency of generating Aa?, but A, so
the final efficiency metric chosen should be proportional to the square root of
the former quantity:

2 <A_a2()\T)>
[M2/2%]

€=

(139)

Here, efficiency e depends on both A and B, where A characterizes the shape
of the irradiance pattern and B indicates the relative size of the pattern to the

turbulence wavelength. For the case of a square pattern A = —1, and one can
derive
| sin(7B)] )
= = B)|. 140
e= 1222 = [sine(B)| (140)

For a circular pattern A = +1, and one can derive

@B

= (141)

These functions are very similar in appearance though the zeros occur at different
intervals and the patterns extinguish at different rates.

In cvaluating the more genceral cases, we note that the factor M/Ar drops out
when dividing by 1/2 M2/)2.. Second, using the rule sin(a+b) = sin(a) cos(b) +
cos(a) sin(b), we may expand the term sin(f + 2wz/A7) and represent the
evaluation in terms of two integrals to evaluate equation (137). Of these two,
onc will contain the term sin(2w z/A7), and because sinc is an odd function,
while the irradiance pattern is even, the net integral must evaluate to zero.

The remaining term in equation (137) involves a sin(f) quantity which factors
out of the integral. Equation (138) is thus considerably simplified and yields the
result (27r)~! f:” sin?(9) dd = 1/2. (Note: This 1/2 factor cancels with the 1/2
in the normalizing factor.) We then further normalize the integration procedure
by the changes of variables z = ApBu and y = ApBv. These substitutions result
in an argument of 2w Bu in the cosine variable and to normalized limits for the
integration region of the irradiance signature:

1/2
€(A, B) = / cos(2wBu) I,(A, B, u) du|, (142)

1/2

where I, is a normalized irradiance pattern involving a final simplification
whereby the v variable is integrated out. The resulting integral equation can be
rapidly evaluated numerically for a series of patterns with different A parameter
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Figurc 5. Normalized irradiance profiles plotted for various values of the parameter
A. The area under each curve equals unity. The normalized profile position variable
u ranges over the width of the pattern from -1/2 to +1/2.

valucs. We present a serics of I, patterns plotted for A = —1...1 in steps of 1/4
in figure 5.

Use of the normalized irradiance profiles permits us to evaluate the efficiency
factor using the integral relation

1/2
e(A, B) = / cos(2n Bu) I,(A, u) du|. (143)

1/2

Resulting efficiency curves for the cases included in figure 5 are plotted in
figure 6.

Since we have previously noted that the effects of beam shape can be assessed
independently for each axis, we now write the final equation for Ad by inserting
efficiency factors (A4, B) for each axis into our A& equation:

. c ) l. m| -
Ad(x,y) = n—o Z Z’LQ’K [—)—(—Z-I- 7‘7] Tim
{ m

x € (A(z), IC(2)/ X) € (A(z), mC(2)/Y) (144)
X exp [izw (%(“f %)] ,

where C(z) = Pg(z) + Dg(z) is introduced.

Though the deflector screen model cannot handle scintillation effects, influences
of wavefront degradation can be approximated by subsampling the arriving
radiance over the system entrance pupil. This subsampling procedure is
necessary when the turbulent coherence diameter is markedly smaller than the
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Figure 6. Efficiency response function, €, plotted as a function of the shape parameter
A and the pattern ratio B. The range of A values plotted indicates the behavior of
the efficiency across intermediate conditions spanning between the limiting cases.

system entrance pupil diameter. In effect, different portions of the entrance
pupil are seeing light arriving from a single direction that originated from
different pixel regions in the object plane. Thus, it is possible to include
simulated blurring effects by subsampling the entrance pupil. To determine if
such subsampling is necessary, a coherence diameter (r,) can be computed and
compared with the system entrance pupil diameter (D). If the ratio D/r, > 1,
subsampling will be necessary. A similar comparison can be made between a
coherence diameter (r,,), calculated using a path weighting function oriented
toward the object plane, and the width P = Z¢,. If P/ro, > 1, it will be

necessary to subsample angular trajectories within the field of regard of each
pixel.

The effect of subsampling either or both of these regions would be to reduce P
and/or D by factors \/TV; and/or /Ny, respectively. Call these new subsampled
scales P’ and D’. When subsampling the receiver aperture it would be necessary
to average the sample results obtained to produce a mean result for each pixel
based on the source regions mapped to by the Ny samples. From the above
discussion, it would be necessary to consider the shape of the subsamples as
well as their number. For subsamples in the source pixel region, it would be
more advantageous to subdivide it into equal-shaped squares. For subsamples
in a circular receiver aperture it might be more advantageous to model the effects
in terms of hexagons which have the approximate shape of circles.

Having performed this analysis, we may be able to determine which spectral
region has the most effect on tilt. For the moment let us consider the case of small
pixels and a large system aperture. In this case the shape of the spectral profile
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fits the case A = 1 over nearly the entire path. Hence, based on equation (144),
the magnitude of the Ad@ kernel is approximately proportional to

Iﬁl x 0 /¥y, (o) €[1, aC(2)]. (145)

In this equation we have approximated the effect of either of the two orthogonal
Bessel functions by a single radially symmetric ¢ function. We have also
assessed the radial behavior of the gradient operator as being proportional to
the magnitude of the vector. The resulting magnitude is just the modulus of
the Fourier transform of Ad, here written as R. We show sample plots of this
function in figure 7. We have plotted curves for valucs of L, that arc 10 D,,
100 D,, and 1000 D,.
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Figure 7. Proportional magnitude of the Fourier spectrum of the beam deflections
normalized with respect to the outer scale length.

As can be seen, finite pixels and entrance apertures tend to negate the efficiency
of higher frequency turbulence in creating beam tilt. However, the highest
frequency components obviously do not generate the greatest influence on the
tilt. Rather, it is spectral components in the vicinity of the outer scale that
dominate tilt effects.

4.5 Method Comparison

Before concluding, it is worthwhile to mention that the temporal cross
correlation, r5,, derived in section 4.2 is equivalent to the optical path length
cross correlation derived by Fleck et al. (1975) and Martin and Flatté (1988)
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except for changes in nomenclature. Nevertheless, there is a slight discontinuity
between these results and those of Goodman (1985).

To study this discontinuity we must begin by translating between our
nomenclature and that used by these other authors. Martin and Flatté (1988)
develop a phase correlation function, By, which is very similar to the I' (optical
depth) correlation analysis of Fleck et al. (1976). The use of the B convention
for covariances is standard throughout a significant portion of the available
literature (cf. Beland, 1993). Martin and Flatté’s By is proportional to our
7s- function:

By(3) = k* ? r5.(5). (146)

By thus equals a set of scaling constants times the 2-D inverse transform of
®,, (R, 0). Hence, taking the forward transform of By produces their function

Bg(Ry) =2k Ad, (KL, 0), (147)

where R, is the transverse plane component of their & frequency variable. @y is
thus the 2-D power spectrum for phase fluctuations.

Previously we discussed the factor 2w A, indicating that the range step A was
bounded both above and below. We now note a comparison between this result
and a result for a similar analysis by Goodman (1985). Goodman’s power
spectrum of phase (Goodman’s equation (8.6-25)) is written as,

sin(x2 A/k)

L2 @, (R, 0). 148
| 2L 0 (148)

Fs(liL; A) = WEzA |:1 +

The relationship between ®¢ and Fs should be one-to-one, but Goodman’s Fg
function contains a term that depends on the dimensionless variable u = k2 A/k.
In the limit as ¥ — 0 this term approaches 2, which agrees with Martin and
Flatté. But for large u, the term fluctuates about unity. Hence, for accurate
evaluation of the phase screen and deflector screen approaches we must ensure
that A < k/x% in addition to our other conditions. Goodman’s analysis is also
instructive in that his results indicate that the mean wavenumber of the receiver
has an influence on the overall requirements of the wave propagation methods
used.
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5. Conclusions

In this document two key methodologies for simulating the propagation of
imagery through optical turbulence have been presented in a comprehensive
analysis. The mathematical basis for such analysis rests upon the various
forms of the Fourier transform, including Fourier series expansions for periodic
functions and FFTs for sampled functions. Based on these Fourier methods
it was shown that various means of representing the turbulent refractive index
power spectrum exist, and the interrelationships between these expressions were
described, particularly between the form commonly used in turbulence analysis
literature and the form useful in FFT calculations.

A derivation was also presented for evaluating the propagation statistics of
cross correlation of fluctuations in the time of transit of wave energy through
a turbulent layer of thickness A. Two methods were described, one supporting
wave optical calculations known as the phase screen approach, and a second
method based on raytracing called the deflector screen approach.

The phase screen method is more accurate because it treats the propagating
energy using wave optics. However, this method may be prohibitively more
expensive in computational time as the fluctuations in the field must be tracked
with high precision at each integration step. By comparison, the tilt effects
modeled by the deflector screen method account for the largest energy portion
of the turbulence spectrum and should be sufficient to capture large scale
distortions of objects due to turbulence. The limitation is that the deflector
screen method cannot properly handle turbulent scintillation or image blurring
effects because only the tilt of the beam is considered, not turbulent destruction
of the propagating wavefront, or loss of wavefront coherence. For far-IR. systems
such cffects arc not critical. To determine the limits of applicability of the
deflector screen method it is recommended that the phase screen approach be .
used as a benchmark. With regard to processing requirements the deflector
screen method will likely provide sufficient accuracy while providing rapid
processing capability in support of scenario generation for user perception
testing. The phase screen method, on the other hand, will require very high-
powcred computer capabilitics in support of rcalistic propagation studics. The
result will likely be that the phase screen method will see limited use, but will

‘provide valuable information, while the bulk of the processing is accomplished

using the deflector screen method which is computationally much more efficient.
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Acronyms

EOSAEL
FLIR
FFT
IFOV

IR

LSI

MFT
RHS

Electro-Optical Systems Atmospheric Effects Library
Forward-Looking Infrared

Fast Fourier Transform

instantaneous field of view

infrared

linear shift invariant

modulation transfer function

right hand side
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BOULDER CO 80307-3000

HEADQUARTERS DEPT OF ARMY
DAMI POI

ATTN LEE PAGE

WASHINGTON DC 20310-1067

US ARMY INFANTRY

ATSH CD CS OR

ATTN DR E DUTOIT

FT BENNING GA 30905-5090

HQ AFWA/DNX
106 PEACEKEEPER DR STE 2N3
OFFUTT AFB NE 68113-4039

PHILLIPS LABORATORY

PL LYP

ATTN MR CHISHOLM
HANSCOM AFB MA 01731-5000

PHILLIPS LABORATORY
PL LYP 3
HANSCOM AFB MA 01731-5000

AFRL/VSBL
29 RANDOLPH RD
HANSCOM AFB MA 01731




ARL CHEMICAL BIOLOGY
NUC EFFECTS DIV
AMSRL SL CO

APG MD 21010-5423

US ARMY MATERIEL SYST
ANALYSIS ACTIVITY
AMSXY

APG MD 21005-5071

US ARMY RESEARCH LABORATORY
AMSRL D

2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

US ARMY RESEARCH LABORATORY
AMSRL OP CI SD TL

2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

US ARMY RESEARCH LABORATORY
AMSRL CI LL
ADELPHI MD 20783-1197

US ARMY RESEARCH LABORATORY
AMSRL SS SH

ATTN DR SZTANKAY

2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

US ARMY RESEARCH LABORATORY
AMSRL CI

ATTN J GANTT

2800 POWDER MILL ROAD
ADELPHI MD 20783-1197

US ARMY RESEARCH LABORATORY
AMSRL

2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

NATIONAL SECURITY AGCY W21

ATTN DR LONGBOTHUM

9800 SAVAGE ROAD

FT GEORGE G MEADE MD 20755-6000

59
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US ARMY RSRC OFC

ATTN AMXRO GS DR BACH
PO BOX 12211

RTP NC 27009

DR JERRY DAVIS

NCSU

PO BOX 8208

RALEIGH NC 27650-8208

US ARMY CECRL

CECRL GP

ATTN DR DETSCH
HANOVER NH 03755-1290

US ARMY ARDEC
SMCAR IMI I BLDG 59
DOVER NJ 07806-5000

ARMY DUGWAY PROVING GRD
STEDP MT DAL 3
DUGWAY UT 84022-5000

ARMY DUGWAY PROVING GRD
STEDP MT M

ATTN MR BOWERS

DUGWAY UT 84022-5000

DEPT OF THE AIR FORCE
OL A 2D WEATHER SQUAD MAC
HOLLOMAN AFB NM 88330-5000

PL WE
KIRTLAND AFB NM 87118-6008

USAF ROME LAB TECH
CORRIDOR W STE 262 RL SUL
26 ELECTR PKWY BLD 106
GRIFFISS AFB NY 13441-4514

AFMC DOW
WRIGHT PATTERSON AFB OH 45433-5000




US ARMY FIELD ARTILLERY SCHOOL
ATSF TSM TA
FT SILL OK 73503-5600

US ARMY FOREIGN SCI TECH CTR
CM

220 7TH STREET NE
CHARLOTTESVILLE VA 22902-5396

NAVAL SURFACE WEAPONS CTR
CODE G63
DAHLGREN VA 22448-5000

US ARMY OEC

CSTE EFS

PARK CENTER IV

4501 FORD AVE
ALEXANDRIA VA 22302-1458

US ARMY CORPS OF ENGRS
ENGR TOPOGRAPHICS LAB
ETL GS LB

FT BELVOIR VA 22060

US ARMY TOPO ENGR CTR
CETECZC 1
FT BELVOIR VA 22060-5546

SCI AND TECHNOLOGY
101 RESEARCH DRIVE
HAMPTON VA 23666-1340

US ARMY NUCLEAR CML AGCY
MONA ZB BLDG 2073
SPRINGFIELD VA 22150-3198

USATRADOC
ATCD FA
FT MONROE VA 23651-5170

ATRC WSS R
WSMR NM 88002-5502
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US ARMY RESEARCH LABORATORY
AMSRL CIE

COMP & INFO SCI DIR

WSMR NM 88002-5501

DTIC
8725 JOHN J KINGMAN RD

STE 0944
FT BELVOIR VA 22060-6218

US ARMY MISSILE CMND
AMSMI

REDSTONE ARSENAL AL 35898-5243

US ARMY DUGWAY PROVING GRD

STEDP3
DUGWAY UT 84022-5000

USTRADOC
ATCD FA
FT MONROE VA 23651-5170

WSMR TECH LIBRARY BR
STEWS IM IT
WSMR NM 88002

US ARMY RESEARCH LAB
AMSRL D DR D SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

US ARMY CECOM

INFORMATION & INTELLIGENCE
WARFARE DIRECTORATE

ATTN AMSEL RD IW IP

FORT MONMOUTH NJ 07703-5211

US ARMY RESEARCH LAB
ATTN AMSRL CI EW

MR TOFSTED
WSMR NM 88002-5513

Record copy

TOTAL

15

70



